🗂️ 3D NAND Flash Memory | 3D NANDフラッシュメモリ


📘 Overview | 概要

3D NAND is a flash memory technology that achieves non-volatility, high capacity, and cost efficiency.
3D NANDは、不揮発・大容量・コスト効率を実現したフラッシュメモリ技術です。

While 2D NAND (planar) faced challenges such as scaling limits and reliability degradation,
the 3D structure stacks memory cells vertically to continue capacity improvements.
従来の2D NAND(平面構造)では微細化限界や信頼性劣化が問題化したため、
セルを垂直方向に積層(3D構造)することでスケーリングが継続されています。


🧱 Structure and Evolution | 構造と進化

┌─────────────────────┐
│      Controller      │ ← ECC, wear-leveling, I/F control  
│      コントローラ     │
└─────────────────────┘
        │││││││││││
┌──────────────────────────┐
│  Cell array (3D stacked)  │ ← Expanding from 64 to 500+ layers  
│   セルアレイ(垂直積層)    │
└──────────────────────────┘

🔍 Key Elements | 基本構造と技術要素

Element 要素 Description 説明
Charge Trap / Floating Gate Stores data via trapped charge (non-volatile)
電荷を絶縁層に閉じ込めてデータを保持
TLC / QLC Triple-/Quad-Level Cell (3 or 4 bits per cell)
1セルで3〜4ビット記憶
Page / Block / Die Hierarchical access units
階層的な単位で読み書き・消去を管理

📊 Memory Comparison | メモリ比較

Feature 特性 3D NAND MRAM SRAM DRAM
Non-volatility 不揮発性 × ×
Endurance 書換回数 △ (10⁴–10⁵) ◎ (10¹⁵+)
Write Speed 書換速度 × (µs–ms)
Capacity 容量 ◎ (TB-scale)
Area Efficiency 面積効率 ◎ (3D stacked)

🧭 SoC Integration | SoC設計との関係

Item 項目 Details 内容
Connection 接続方式 Typically external (eMMC, UFS, NVMe)
Role 役割 Stores boot code, logs, data
Control 制御技術 Requires ECC (LDPC, etc.), wear-leveling, caching
Filesystem Co-design with software (FTL required)
ソフトウェア連携が重要

📌 Hierarchy and Design Aspects | 階層構成と設計観点

Level 階層 Description 概要
Cell Stores 1–4 bits using trapped charge
Page Minimum write unit (2–16KB)
Block Erase unit (multiple pages)
Die / Channel Physical chip structure (controls blocks)

💡 NAND erases in block units, requiring copy and relocation.
This makes the controller (FTL: Flash Translation Layer) crucial for performance and endurance.
NANDはブロック単位での消去が必要であり、書き換えのたびにコピー&再配置が発生
コントローラ設計(FTL)が性能・寿命に大きく影響します。


⚠️ Design Considerations | 設計・使用上の注意点

Issue 課題 Details 内容
Endurance 書換え寿命 TLC/QLC typically limited to 1K–100K writes
Retention 劣化 Data loss due to charge leakage over time/temperature
Read Disturb 読み出し干渉 Inter-cell interference during frequent reads
ECC 誤り訂正 Trade-off between correction strength and latency

📚 Educational Value | 教材的意義



🏘 Applied Chapter 1: Memory Technologies|応用編 第1章:メモリ技術


© 2025 Shinichi Samizo / MIT License