🧾 Unified Transistor and Resistor Summary

Process Node: 0.18μm CMOS / Gate Width $W = 10\mu\mathrm{m}$

This document summarizes:


📐 Gate Oxide Thickness by Voltage

酸化膜厚と電圧の関係

Voltage $T_{\text{ox}}$ (nm) Notes
1.8V ~3.5 Core logic transistors
3.3V ~7.0 I/O and ESD protection
5.0V ~15.0 Analog / high-voltage blocks

📎 Dielectric: SiO₂ assumed ( $\varepsilon_{\text{ox}} \approx 3.9$ )


🔋 Transistor Characteristics (W = 10μm)

各電圧領域におけるNMOS / PMOS特性

VDD $L$ (μm) Device $T_{\text{ox}}$ (nm) $V_{\text{th}}$ (V) $I_{\text{dlin}}$ (μA/μm) $I_{\text{dsat}}$ (μA/μm) $I_{\text{off}}$ (nA/μm) $I_{\text{cutoff}}$ (pA/μm) $B_{\text{vds}}$ (V)
1.8V 0.16 NMOS 3.5 0.42 300.0 500.0 100.00 1000.0 1.60
1.8V 0.16 PMOS 3.5 0.62 150.0 250.0 80.00 800.0 1.60
1.8V 0.18 NMOS 3.5 0.42 298.8 498.0 92.31 941.8 1.68
1.8V 0.18 PMOS 3.5 0.62 149.4 249.0 73.85 753.4 1.68
3.3V 0.25 NMOS 7.0 0.68 120.0 200.0 20.00 50.0 3.50
3.3V 0.25 PMOS 7.0 0.88 60.0 100.0 16.00 40.0 3.50
5.0V 2.0 NMOS 15.0 1.00 100.0 150.0 5.00 20.0 8.00
5.0V 2.0 PMOS 15.0 1.20 50.0 75.0 4.00 16.0 8.00

🧿 Estimated Mobility Table

キャリア移動度(参考)

Carrier Type $\mu$ (cm²/V·s) Notes
Electron (NMOS) ~450 Inversion layer, effective mobility
Hole (PMOS) ~200 ~0.45× NMOS (typical)

🧪 Sheet Resistance (Ω/□)

シート抵抗(ポリ・拡散・金属層)

Structure $R_{\text{sheet}}$ (Ω/□) Notes
N+ Diffusion ~70 Shallow implant, moderate Rs
P+ Diffusion ~100 Higher resistivity
N+ Poly ~60 Doped polysilicon
P+ Poly ~80 Higher than N+ poly
ALA (Metal-1) ~0.05–0.08 Core routing
ALB / HLA (Metal-2) ~0.03–0.06 Intermediate routing
ALC / HLB (Metal-3) ~0.02–0.05 Power stripe, major signal distribution
ALD / HLC (Metal-4) ~0.015–0.03 Pad-level or wide global power bus

🔧 Contact Resistance

コンタクト抵抗

Contact Type $R_{\text{contact}}$ (μΩ·cm²)
Kelvin
$R_{\text{chain}}$ (Ω)
10 elements
Notes
CNT (N+ Poly) ~1.2 ~90 Gate contact (N+ Poly → W plug)
CNT (P+ Poly) ~1.6 ~130 Gate contact (P+ Poly → W plug)
CNT (N+ Diff) ~1.0 ~80 Source/Drain contact (N+ Diff → W plug)
CNT (P+ Diff) ~1.4 ~110 Source/Drain contact (P+ Diff → W plug)
HLA ~0.8 ~80 W plug to Metal-2 (ALA layer)
HLB ~0.7 ~70 W plug to Metal-3 (ALB layer)
HLC ~0.6 ~60 W plug to Metal-4 (ALC layer, global power bus)

📎 $R_{\text{contact}}$ is the intrinsic contact resistance per unit area (Kelvin measurement).
$R_{\text{chain}}$ represents total resistance of 10 serial contacts in test structures.


🧮 MOS Capacitor Characteristics (Reference)

酸化膜厚と容量の関係(参考)

Voltage $T_{\text{ox}}$ (nm) $C_{\text{ox}}$ (fF/μm²) Total Cap (10μm × 10μm) Notes
1.8V 3.5 ~10.0 ~1000 fF (1.0 pF) Core device level
3.3V 7.0 ~5.0 ~500 fF I/O buffer use
5.0V 15.0 ~2.3 ~230 fF Analog / HV block

🔍 Calculation Note:
The gate oxide capacitance per unit area is calculated as:

\[C_{\text{ox}} = \frac{\varepsilon_0 \cdot \varepsilon_{\text{ox}}}{T_{\text{ox}}}\]

where:

Thus:

\[C_{\text{ox}} \approx \frac{3.45 \times 10^{-13}}{T_{\text{ox}}~[\mathrm{cm}]}\]

For $T_{\text{ox}} = 3.5~\mathrm{nm} = 3.5 \times 10^{-7}~\mathrm{cm}$:

\[C_{\text{ox}} \approx \frac{3.45 \times 10^{-13}}{3.5 \times 10^{-7}} = 9.86 \times 10^{-7}~\mathrm{F/cm^2}\]

Convert to fF/μm² (1 F/cm² = 10 fF/μm²):

\[C_{\text{ox}} \approx 9.86~\mathrm{fF}/\mu\mathrm{m}^2\]

💡 Result:
When $T_{\text{ox}} = 3.5$ nm, then $C_{\text{ox}} \approx \mathbf{9.86~\mathrm{fF}/\mu\mathrm{m}^2}$.


📏 Units and Symbols

単位と記号の凡例

Symbol Unit Meaning
$W$ μm Gate width
$L$ μm Gate length
$T_{\text{ox}}$ nm Gate oxide thickness
$I_{\text{dlin}}$ μA/μm Linear-region drain current
$I_{\text{dsat}}$ μA/μm Saturation-region drain current
$I_{\text{off}}$ nA/μm Off-state leakage current
$I_{\text{cutoff}}$ pA/μm Subthreshold leakage
$B_{\text{vds}}$ V Drain-source breakdown voltage
$R_{\text{sheet}}$ Ω/□ Sheet resistance
$R_{\text{contact}}$ μΩ·cm² Contact resistance (Kelvin)
$R_{\text{chain}}$ Ω Contact chain resistance (10×)
$C_{\text{ox}}$ fF/μm² Gate oxide capacitance density

📚 Basis of Parameters and Estimation Methods

出力根拠と補足 / Basis of Parameter Derivations

本ドキュメントで示された各種パラメータは、以下の資料、推定手法、ならびに物理モデルに基づいて構成されています:
The parameters presented in this document are derived based on the following data sources, estimation methods, and physical models:

1. 📖 公開プロセス資料・ベンダーデータ

Public Process References and Vendor Data

以下のような代表的なソースから抽出・整理された実データを反映しています:
Representative sources used for extracting and consolidating actual data include:

2. 🔬 モデルベースの推定補完(ゲート幅 $W = 10\mu\mathrm{m}$ で正規化)

Model-Based Estimation (Normalized for $W = 10\mu\mathrm{m}$)

一部のパラメータは、以下のようなMOSトランジスタの基本モデルに基づき推定しています:
Some parameters are estimated using fundamental MOS transistor models, normalized to a gate width of $W = 10\,\mu\mathrm{m}$:

\[I_{\text{dsat}} \approx \mu \cdot C_{\text{ox}} \cdot \frac{W}{L} \cdot (V_{\text{gs}} - V_{\text{th}})^2\]

🔍 この式は、MOSトランジスタが 飽和領域( $V_{\text{ds}} > V_{\text{gs}} - V_{\text{th}}$ ) で動作する場合の電流値近似式であり、CMOS設計における基本的な電流モデルです。
🔍 This formula approximates the drain current when the MOS transistor operates in the saturation region ($V_{\text{ds}} > V_{\text{gs}} - V_{\text{th}}$), and serves as a fundamental current model in CMOS design.

3. 🧪 抵抗および容量パラメータの参照

Reference for Resistance and Capacitance Parameters

下記は、代表的な文献および業界標準値に基づいています:
The following are based on representative literature values and industry-standard references:

⚠️ 注意 / Disclaimer
本ドキュメントの数値は、あくまで教育・設計演習を目的とした「代表的な推定値」であり、ファウンドリやPDKにより異なる場合があります。
The values presented are intended as representative estimations for educational and design training purposes. Actual values may vary by foundry or PDK.


← 戻る / Back to Chapter 3: Process Evolution Top


© 2025 Samizo Shinichi / Edusemi Project