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Abstract—Three-dimensional integration (3D-IC) is increas-
ingly adopted in AI accelerators, HBM stacks, and chiplet-
based SoCs. Yet, critical physical challenges remain, includ-
ing RC delay variation, thermal hotspots exceeding 110◦C,
TSV-induced threshold voltage shifts of 20–30 mV, and EMI
crosstalk stronger than –20 dB. Conventional EDA flows
depend on excessive static guardbands and fail to capture cross-
domain coupling or dynamic variations.

This paper introduces the System Design Kit (SystemDK),
a constraint-driven framework that directly translates multi-
physics evaluations into EDA-usable constraints. Finite ele-
ment thermal maps are converted into keep-out zones and de-
rating models, stress distributions into compact timing models
for STA, and S-parameter extractions into shielding and jitter-
control rules for CTS and routing.

Case studies on a 4-die TSV stack demonstrate that Sys-
temDK improves timing slack by 87%, reduces hotspot temper-
ature by 11◦C, and enlarges EMI-limited eye opening by 23%.
These results validate SystemDK as a physically consistent
bridge between evaluation domains and design closure, paving
the way for adaptive and self-optimizing DTCO methodologies.

I. Introduction
3D-ICs using TSVs, micro-bumps, and monolithic stack-

ing have been deployed in products such as HBM memories
and AMD’s 3D-VCache. Yet key bottlenecks remain:

• Thermal: Hotspots above 110◦C shorten device life-
time by > 10× (Arrhenius model).

• Stress: TSV-induced mechanical stress shifts transis-
tor Vth by up to 30 mV, degrading slack.

• EMI: Crosstalk stronger than –20 dB at 10 GHz closes
eye diagrams and increases jitter.

Conventional EDA flows rely on excessive margins and
isolated analyses. SystemDK instead translates multi-
physics evaluations into EDA-native constraints.

II. Related Work
DTCO frameworks integrate device and design but

rarely feed FEM or EMC results back to layout. PD-
K/IPDK/PKGDK provide static process and package
constraints but ignore cross-domain effects. Chiplet Design
Kits cover PHY and thermal budgets, but not EMI or
stress.

SystemDK is unique in systematically injecting thermal,
stress, SI/PI, and EMI constraints into timing, placement,
and routing tools.

III. SystemDK Framework
SystemDK integrates multiple physics domains with

direct constraint translation:
• Thermal: Cell delay modeled as

delaycell = delay0 · (1 + α∆T ),

and mapped to floorplan blockages and STA derates.
• Stress: TSV-induced shifts modeled as

V ′
th = Vth +∆Vth(r, θ),

injected into STA as delay derates.
• EMI: Crosstalk (S21 < −20 dB) triggers shield

insertion and spacing rules.
• S11: Impedance mismatches guide PDN/IO matching

rules.

Multi-Physics Evaluation
(FEM, S-parameters)

SystemDK
Constraint Translation

EDA Flow
(STA / P&R / CTS / Floorplan)

Fig. 1. SystemDK vertical workflow: evaluation results translated
into EDA constraints.

IV. Case Studies
Target: a 4-die TSV stack, evaluated in three domains.

A. Thermal Analysis
FEM simulation showed hotspots up to 118◦C. Sys-

temDK keep-out zones reduced peak to 107◦C.

B. Stress Analysis
TSV-induced stress shifted Vth by 25 mV, leading to

slack loss of –120 ps. With SystemDK, derates reduced
slack loss to –15 ps.
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TABLE I
Mapping FEM and S-parameter results into SystemDK constraints

Analysis Result SystemDK Translation EDA Reflection
Thermal map (hotspot
>110◦C)

Keep-out zone; temperature derating; power-density cap-
ping

Floorplan blockages; STA thermal derate;
signoff thermal checks

Stress map (∆Vth = 20–
30 mV)

Compact stress-to-delay model; library view selection; de-
rating tables

Stress-aware .lib in STA; placement restric-
tions

S11 (reflection,
mismatch)

Target impedance Z0 enforcement; return-path constraint PDN design rules; IO buffer selection;
pkg/board stack-up

S21 (crosstalk > −20 dB) Shield tag; min-spacing; layer-pair rules CTS shield insertion; routing spacing rules
Phase jitter (from S-
params)

Duty-cycle correction; skew budget allocation; jitter injec-
tion

CTS skew margin; STA jitter corners

Fig. 2. Thermal distribution in 4-die TSV stack (hotspot reduced
by 11◦C).

Fig. 3. Stress distribution near TSVs and equivalent Vth shift.

C. EMI/Crosstalk Analysis
S21 analysis showed EMI-induced jitter of 28 ps and eye

closure. With SystemDK constraints, jitter dropped to 12
ps and eye opening widened by 23%.

V. Results
The effectiveness of SystemDK was quantitatively eval-

uated on a 4-die TSV stack using FEM-based ther-
mal/stress simulations and S-parameter extraction for
EMI analysis. All evaluations were mapped into EDA
constraints and tested in a commercial flow (Synop-

Fig. 4. Eye diagram under EMI (before vs. after SystemDK-aware
CTS).

sys PrimeTime for STA derates, Cadence Innovus for
placement/CTS). Results were averaged over multiple
placement and routing seeds to ensure reproducibility.

Baseline design flows, which rely on static guardbands,
suffered from severe slack loss, thermal hotspots, and EMI-
induced eye closure. By contrast, SystemDK translated
multi-physics evaluation results into direct constraints,
significantly improving timing stability, thermal reliabil-
ity, and signal integrity.

Table II summarizes the comparison between baseline
and SystemDK-enabled flows.

TABLE II
Before/After metrics with SystemDK

Metric Baseline SystemDK Gain
Slack variation −120 ps −15 ps +87%
Hotspot temperature 118◦C 107◦C −11◦C
Eye opening (under EMI) 0.52 UI 0.64 UI +23%

SystemDK reduced worst-case slack loss from –120 ps
to –15 ps (an 87% improvement), suppressed thermal
hotspots by 11◦C, and widened EMI-limited eye opening
from 0.52 UI to 0.64 UI (+23%). These results were
consistently observed across repeated experimental runs,
validating SystemDK as a physically consistent bridge
between evaluation domains and EDA flows.



Experimental Setup
All evaluations were performed on a commercial 4-

die TSV stack testbench. The design used a 45nm pre-
dictive PDK library with stress-aware .lib views. Place-
ment and routing were performed in Cadence Innovus
21.1, while timing analysis employed Synopsys PrimeTime
2022.12 with S-parameter based jitter models. Thermal
and stress maps were generated using FEM simulations
(COMSOL Multiphysics 6.1). Eye-diagram analysis was
conducted using ADS transient simulation with extracted
S-parameters.

VI. Discussion
SystemDK raises several key insights regarding practical

deployment:
• Constraint coupling: Thermal–stress interactions and

SI–EMI dependencies are inherently cross-domain
and cannot be captured by isolated signoff tools. By
integrating FEM-based temperature/stress models
and S-parameter-based jitter models, SystemDK en-
ables unified constraint injection that reflects coupled
physics.

• EDA connectivity: The translated constraints were
successfully imported into commercial tools: Synop-
sys PrimeTime for stress-aware timing derates (.lib
variations), Cadence Innovus for placement blockages
and thermal keep-out zones, and clock-tree synthe-
sis engines for shielding and duty-cycle rules. This
demonstrates that SystemDK can be adopted without
modifying existing vendor flows.

• Design trade-offs: Thermal-aware placement tends
to increase routing length, which could degrade SI.
SystemDK mitigates this by simultaneously applying
stress- and jitter-aware derates in STA, balancing
conflicting physical effects during closure. Such trade-
off visibility is a core benefit compared to static
guardbanding.

• Scalability and extension: While demonstrated on a
4-die TSV stack, the methodology scales to chiplet-
based SoCs with over 1000 interposer signals and can
extend toward board- and package-level co-design.
This positions SystemDK as a candidate methodology
for future heterogeneous integration ecosystems.

VII. Conclusion
We proposed SystemDK for 3D-IC, a framework that

bridges multi-physics evaluation and EDA flows through
constraint translation. Case studies on a 4-die TSV stack
demonstrated that SystemDK recovered slack by 87%,
reduced hotspot temperature by 11◦C, and enlarged EMI-
limited eye opening by 23%. These quantitative gains
validate SystemDK as a physically consistent design-
technology co-optimization methodology.

Beyond individual improvements, SystemDK estab-
lishes a systematic approach for integrating thermal,

stress, SI/PI, and EMI/EMC analyses into timing, place-
ment, and routing flows, enabling holistic closure across
domains.

Future work will extend SystemDK toward SystemDK
with AITL (PID + FSM + LLM), targeting adaptive
and self-healing design flows that continuously refine
constraints based on in-field feedback and multi-physics
monitoring.
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