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Abstract—This paper presents a proof-of-concept humanoid
robot control framework that integrates finite-state machines
(FSM), proportional–integral–derivative (PID) control, state-
space methods (LQR/LQG), and large language models (LLMs)
into a unified three-layer architecture. In contrast to prior
platforms (e.g., Atlas or Optimus), the focus is on autonomy,
fault tolerance, and energy sustainability.

The architecture is realized as a heterogeneous cross-node
chipset: a 22 nm system-on-chip executes LLM inference, FSM
management, and state-space control; a 0.18 𝜇m AMS hub
processes multimodal sensing (vision, IMU, force, audio); and a
0.35 𝜇m LDMOS power drive with GaN/MOSFET stages delivers
high-torque actuation. Energy harvesting through piezoelectric,
photovoltaic, and regenerative pathways extends mission en-
durance in off-grid scenarios.

System-level verification using a SystemDK-style co-simulation
demonstrates posture recovery within 200 ms after push distur-
bances, a 30% reduction in center-of-mass deviation compared
with PID-only control, and a 15% improvement in walking
energy efficiency with hybrid harvesting. Nonvolatile checkpoint-
ing (FRAM/EEPROM) further enables resume within 10 ms,
supporting robust mission continuity.

These results demonstrate the feasibility of combining classical
control and AI-based supervision in a sustainable, fault-tolerant
humanoid robot control system.

Index Terms—Humanoid Robots, Fault-Tolerant Control,
FSM, PID, State-Space Methods, LLM, Energy Harvesting

I. INTRODUCTION

Humanoid robots represent one of the most demanding
applications in modern control engineering, requiring dynamic
stabilization, real-time disturbance rejection, and high-level
decision-making. Recent platforms such as Boston Dynam-
ics Atlas and Tesla Optimus have demonstrated remarkable
mobility and manipulation. Nevertheless, existing systems
tend to emphasize either dynamic performance or industrial
deployment, while autonomy, fault tolerance, and energy sus-
tainability remain relatively underexplored.

This paper addresses these gaps by presenting a proof-
of-concept humanoid robot control framework that integrates
finite-state machines (FSM), proportional–integral–derivative
(PID) controllers, state-space methods (LQR/LQG), and large
language models (LLMs) into a unified hierarchical archi-
tecture. In this design, (1) low-level PID and state-space
control ensure stable actuation, (2) mid-level FSM handles
task sequencing and mode switching, and (3) the LLM layer
provides high-level goal reasoning and anomaly interpretation.

The proposed architecture is realized as a heterogeneous
cross-node design, consisting of a 22 nm system-on-chip
for inference and control, a 0.18 𝜇m AMS sensor hub for
multimodal data acquisition, and a 0.35 𝜇m LDMOS-based

drive stage with external GaN/MOSFET modules for high-
torque actuation. System-level validation using SystemDK co-
simulation demonstrates posture recovery within 200 ms after
disturbances, a 30% improvement in gait stability, and a
15% increase in energy efficiency compared with PID-only
baselines. These results highlight the feasibility of combining
classical control theory and AI-based supervision to realize
sustainable and fault-tolerant humanoid robots.

II. RELATED WORK

Classical humanoid control has been dominated by
proportional–integral–derivative (PID) loops, which provide
joint-level stabilization and trajectory tracking with simplicity
and robustness. Boston Dynamics’ Atlas demonstrates highly
dynamic behaviors such as jumping and flipping, achieved
through advanced mechanical design and optimized low-level
controllers. In contrast, Tesla’s Optimus prioritizes scalable
production for industrial assistance, emphasizing simplified
locomotion and manipulation.

Beyond PID control, state-space methods such as the lin-
ear quadratic regulator (LQR) and linear quadratic Gaussian
(LQG) have been applied to multi-input multi-output hu-
manoid systems, enabling systematic stability analysis and
optimal feedback design. Recent research also explores re-
inforcement learning for adaptive control, although training
complexity and safety concerns remain significant challenges.

Integration of symbolic reasoning with classical control has
received limited attention. While finite state machines (FSMs)
provide interpretable supervisory logic, their combination with
advanced learning models is still emerging. In particular,
the use of large language models (LLMs) within humanoid
control remains underexplored. This work advances the field
by embedding LLMs into a hierarchical control loop: the
LLM layer generates goals, interprets anomalies, and supports
human–robot interaction, while stability and safety are ensured
by PID and state-space controllers.

III. SYSTEM ARCHITECTURE

A. Cross-Node Chipset

The humanoid control system is implemented as a hetero-
geneous cross-node chipset integrating:

• Brain SoC (22 nm): executes LLM inference, FSM
management, and LQR/LQG control;

• Sensor Hub (0.18 µm AMS): acquires multimodal data
from cameras, IMU, encoders, force/pressure sensors, and
microphones;
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PID Layer: Real-time stabilization

FSM Layer: Supervisory mode switching

LLM Layer: High-level reasoning & anomaly-driven redesign

Humanoid Robot Dynamics

Feedback

Fig. 1. AITL three-layer control hierarchy. PID ensures stability, FSM orches-
trates mode transitions, and LLM supervises anomalies and reconfiguration.

• Power Drive (0.35 µm LDMOS with external
GaN/MOSFET): delivers high-torque actuation with cur-
rent and temperature monitoring;

• Energy Harvesting Subsystem: incorporates piezoelec-
tric, photovoltaic, and regenerative sources for extended
autonomy;

• Memory Subsystem: employs LPDDR for active tasks
and FRAM/EEPROM for checkpointing and persistent
logging.

B. AITL Three-Layer Control Architecture
The control hierarchy follows the AITL (AI-Integrated

Three-Layer) paradigm, where classical feedback and super-
visory logic are augmented with AI-based reasoning:

• Inner Loop (PID Control): guarantees joint-level stabil-
ity, disturbance rejection, and real-time responsiveness;

• Middle Loop (FSM Control): orchestrates sequential
behaviors such as standing, walking, turning, recovery,
and energy-saving modes by supervising PID controllers;

• Outer Loop (LLM Supervision): interprets anomalies,
generates high-level goals, and, when necessary, recon-
figures the control system itself by retuning PID gains or
revising FSM transition rules.

This layered design ensures stability through PID, structured
sequencing via FSM, and adaptability through LLM-driven su-
pervision, establishing a hybrid paradigm that bridges model-
based control and AI-driven reasoning.

C. SystemDK Co-Design Flow
As illustrated in Fig. 2, the proof-of-concept was modeled

and verified using SystemDK. The co-design flow captures
cross-node interactions among the digital SoC, AMS sensor
hub, power drive, and energy harvesting modules, enabling
multi-physics co-simulation including noise, thermal, and me-
chanical stress effects.

D. Key Performance Indicators
The architecture was evaluated against several key per-

formance indicators (KPIs), summarized in Table I. These
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Fig. 2. SystemDK-based integrated design flow spanning SoC (22 nm), AMS
(0.18 µm), LDMOS power drive (0.35 µm), and energy harvesting subsystems.

TABLE I
SUMMARY OF KEY PERFORMANCE INDICATORS (KPIS)

Metric Result

Posture recovery time ≤ 200 ms (baseline PID-only: >
500 ms)

Gait stability (CoM RMS) ≈ 30% improvement over PID-
only

Energy efficiency +15% with hybrid control and
harvesting

Self-harvested power Up to 20% of system power bud-
get

Checkpoint resume time ≤ 10 ms (FRAM/EEPROM-
based)

Memory endurance 1012 write cycles (FRAM)

metrics guided design trade-offs in stabilization, efficiency,
and resilience.

IV. EXPERIMENTAL RESULTS
System-level validation was performed using SystemDK

multi-physics modeling and hardware-in-the-loop prototypes.
The evaluation focused on disturbance recovery, gait stabil-
ity, energy efficiency, memory subsystem performance, and
comparison with existing humanoid platforms.

A. Posture Recovery
Disturbance rejection tests were conducted on a flat surface

under controlled lateral pushes applied at the torso level during
continuous walking with a gait cycle of 0.8 s. In the SystemDK
co-simulation, sensor quantization noise, encoder jitter, ther-
mal drift, and mechanical stress effects were modeled using
vendor-specified parameters for AMS (0.18 µm) and LDMOS
(0.35 µm) technologies. Each experiment was repeated ten
times, and recovery times were averaged. Results indicate
that the proposed FSM+PID+LLM controller restores upright
posture within 200 ± 15 ms, compared to 520 ± 25 ms with
PID-only control. This demonstrates a statistically consistent
more than twofold improvement in recovery speed.
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B. Gait Stability
Center-of-mass (CoM) deviation was measured during con-

tinuous walking. The hybrid architecture reduced RMS CoM
deviation by approximately 30% ± 4% relative to the PID-
only baseline, confirming enhanced whole-body coordination
across multiple trials.

C. Energy Efficiency
By combining classical control with piezoelectric, photo-

voltaic, and regenerative harvesting, the system achieved an
average energy efficiency improvement of 15% ± 3%. In field
scenarios, self-harvesting contributed up to 20% of the total
power budget, significantly extending operational duration
without external charging.

D. Memory Subsystem
Checkpoint-and-resume functionality using

FRAM/EEPROM-based storage enabled system recovery
within 10 ± 1 ms without full reinitialization. Endurance tests
validated 1012 write cycles, satisfying durability requirements
for continuous PoC operation.

E. Comparison with Existing Humanoids
Table II compares the proposed Samizo-AITL PoC with

Boston Dynamics Atlas and Tesla Optimus. Unlike Atlas,
which prioritizes dynamic acrobatics, and Optimus, which tar-
gets scalable industrial deployment, the proposed system em-
phasizes autonomy, fault tolerance, and energy self-sufficiency.

V. DISCUSSION
Table II compares the proposed Samizo-AITL PoC with

two representative humanoid platforms: Boston Dynamics
Atlas and Tesla Optimus. Atlas excels at dynamic acrobatics,
while Optimus emphasizes scalable industrial deployment. In
contrast, the proposed PoC targets autonomy, fault tolerance,
and sustainable operation.

A first distinctive feature is the integration of LLMs into the
hierarchical control loop. Instead of replacing classical con-
trollers, the LLM layer generates goals, interprets anomalies,
and provides conversational interfaces. This complements the
FSM for supervisory logic and PID/state-space methods for
stabilization, creating a hybrid architecture that combines the
safety of model-based control with the adaptability of data-
driven intelligence.

A second differentiator is energy autonomy. The PoC
integrates piezoelectric, photovoltaic, and regenerative har-
vesting, allowing up to 20% of the power budget to be
sustained without external charging. This contrasts with Atlas
and Optimus, which rely exclusively on batteries. Together
with FRAM/EEPROM-based checkpoint-and-resume, the sys-
tem ensures resilient operation in remote or resource-limited
environments.

A third contribution is educational reproducibility. All spec-
ifications, models, and proof-of-concept results are openly
published in bilingual (Japanese–English) format on GitHub
Pages. This open-science approach enables replication, lowers

barriers for students, and positions the PoC as both a research
prototype and an instructional benchmark in control engineer-
ing education.

Overall, the proposed system demonstrates that hybrid ar-
chitectures can extend humanoid robotics beyond performance
and manufacturability, toward autonomy, resilience, and sus-
tainable deployment.

VI. CONCLUSION
This paper presented a flagship proof-of-concept humanoid

control system that integrates finite state machines (FSM),
PID/state-space methods, and large language models (LLMs)
within a cross-node chipset architecture. The system spans
a 22 nm SoC for inference and control, a 0.18 µm AMS
sensor hub, and a 0.35 µm LDMOS drive with external
GaN/MOSFET integration. SystemDK-based validation con-
firmed posture recovery within 200 ms, gait stability improved
by 30%, and energy efficiency gains of 15%. Energy har-
vesting contributed up to 20% of the power budget, while
checkpoint-and-resume enabled robust mission continuity.

The main contributions are:
• A hierarchical control framework combining FSM,

PID/state-space, and LLM layers for autonomy and fault
tolerance;

• Cross-node semiconductor co-design integrating digital,
AMS, and power technologies;

• Experimental validation of resilience and sustainability
via posture recovery, gait stability, and energy harvesting
KPIs;

• Open publication of models and PoC results, supporting
reproducibility and education.

Future work will extend this PoC to larger-scale prototypes
with enhanced GaN-based actuation, optimized harvesting, and
field deployment in resource-constrained environments. Be-
yond humanoid robotics, the proposed hybrid control paradigm
points toward a general framework that bridges classical
model-based control and AI-driven reasoning.
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APPENDIX A
CONTROL & SIMULATION PARAMETERS

Table III summarizes the key control parameters and Sys-
temDK simulation settings used in the experiments.

TABLE III
CONTROL AND SIMULATION PARAMETERS (SYSTEMDK)

Parameter Value / Model

Gait cycle 0.8 s
Disturbance type Lateral push at torso
Sensor quantization noise 12-bit IMU, 14-bit encoder
Encoder jitter ±1 LSB
Thermal drift model 0.5%/10◦C (AMS 0.18 µm)
Mechanical stress model Vendor FEM-based coefficients
PID gains (hip joint) 𝐾𝑝 = 120, 𝐾𝑖 = 5, 𝐾𝑑 = 18
FSM modes Standing, walking, turning, re-

covery, energy-save
LLM triggers Anomaly classification, FSM

rule reconfiguration

APPENDIX B
DEVICE & HARDWARE SPECIFICATIONS

Table IV lists the semiconductor and hardware-level param-
eters for the cross-node chipset.

TABLE IV
DEVICE AND HARDWARE SPECIFICATIONS

Component Specification

Brain SoC 22 nm CMOS, quad-core,
LPDDR4 interface

Sensor Hub 0.18 µm AMS, 12b ADC, 14b
encoder IF

Power Drive 0.35 µm LDMOS + external
GaN

Torque per joint 60 Nm peak (GaN stage)
Energy harvesting PV (20%), piezo (10 mW), re-

gen braking
Memory (volatile) LPDDR4, 2 GB
Memory (non-volatile) FRAM 1012 cycles, EEPROM
Checkpoint resume ≤10 ms
Package integration System-in-Package (SiP)

https://www.tesla.com/AI
mailto:shin3t72@gmail.com
https://github.com/Samizo-AITL
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