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Abstract—Ferroelectric FETs (FeFETs) are promising CMOS-
compatible embedded nonvolatile memories. This paper demon-
strates a 1.8 V FeFET module integrated on a legacy 0.18 `m
CMOS process with only one additional mask and a single
ALD tool. Fabricated devices show endurance exceeding 105

program/erase cycles and retention longer than 10 years at 85◦C.
Reliability was characterized on FeCAP/FeFET structures, in-
cluding time-zero dielectric breakdown (TZDB), time-dependent
dielectric breakdown (TDDB), endurance, and retention.

Unlike approaches aiming for high-density NVM, our concept
employs FeFETs as a supplementary backup for SRAM, avoiding
aggressive scaling and thus improving yield and reliability. The
method offers a cost-effective path to extend mature-node life-
times and to enable dependable embedded NVM for automotive,
industrial, and IoT applications, while high-temperature retention
remains the key limiter.

I. Introduction

Ferroelectric Hf0.5Zr0.5O2 (HZO) thin films have emerged
as a leading candidate for CMOS-compatible nonvolatile mem-
ories (NVMs), offering low-voltage operation, scalability, and
compatibility with standard CMOS thermal budgets [1]–[4].
Compared with embedded flash (eFlash), FeFETs provide
lower process cost and superior scalability; unlike MRAM and
ReRAM, they require no exotic materials or additional BEOL
steps, making them highly attractive for embedded integration.

While much prior research targets sub-28 nm advanced
nodes, mature nodes such as 0.18 `m remain workhorses in
automotive and industrial electronics, where cost efficiency,
process maturity, and long supply lifetimes are essential. In
this context, FeFETs are not positioned as a high-density
replacement memory, but rather as a supplementary backup to
SRAM, which avoids aggressive scaling, improves yield, and
enhances reliability.

This work makes four contributions: (i) demonstration of
a +1 mask, low-cost FeFET module on a 0.18 `m baseline
CMOS process, (ii) realization using only a single ALD
chamber for Al2O3/HZO and a standard TiN gate process,
(iii) proposal of a yield- and reliability-friendly SRAM+FeFET
backup/restore system model, and (iv) comprehensive reliabil-
ity characterization (time-zero dielectric breakdown (TZDB),

time-dependent dielectric breakdown (TDDB), endurance, and
retention) on FeCAP/FeFET structures.

II. Process Integration
Baseline is a 0.18 `m CMOS platform (1.8 V core, optional

3.3 V I/O). The FeFET module is inserted after Co-salicide
(RTA), requiring only one additional mask. The HZO/Al2O3
ferroelectric stack is deposited by a single ALD tool (both
interlayer Al2O3 and HZO in one chamber), and the TiN metal
gate is formed by collimated or long-throw PVD sputtering.
This integration minimizes line modification and suppresses
capital expenditure.

A. Process Flow

Baseline CMOS (poly + Co-salicide RTA)

ALD: Al2O3 (1–2 nm)

ALD: HZO (8–12 nm) (same ALD tool)

PVD TiN (30–50 nm, collimated/long-throw)

Mask + Pattern (1 additional mask)

RTA (450–500◦C)

BEOL

Fig. 1. Process flow of FeFET integration after Co-salicide. Only one mask
and a single ALD tool are required.

B. Cross Section

https://github.com/Samizo-AITL


p-Si substrate
Al2O3 1–2 nm
HZO 8–12 nm
TiN 30–50 nm

Fig. 2. Cross section of HZO/Al2O3/TiN stack.

III. Devices and Methods

TABLE I
Reliability test matrix (devices: FeCAP/FeFET).

Item Conditions

TZDB DC ramp ≈ 0.1 V/s, RT–125 °C
TDDB ±2.3/2.5/2.7 V, 85 °C, 125 °C
Endurance ±2.5 V, 10 µs, 10 kHz, up to 105

Retention 25 °C, 85 °C, 125 °C

Test structures include FeCAPs (flat/comb) and 100 `m ×
100 `m FeFET cells. Programming used ±2.3–2.7 V, 1–50 `s
pulses. A Keysight B1500A with a manual probe station was
used.

Protocols: TZDB: DC ramp ≈ 0.1 V/s at RT–125◦C.
TDDB: constant-voltage stress at ±2.3/2.5/2.7 V, 85◦C and
125◦C; Weibull fitting. Endurance: ±2.5 V, 10 `s, 10 kHz up
to 105 cycles. Retention: 25◦C, 85◦C, 125◦C with Arrhenius
extrapolation.

IV. Results: Reliability

A. Time-Zero Dielectric Breakdown (TZDB)

Fig. 3. TZDB distributions of FeCAPs. Early-failure tails imply defect-driven
breakdown paths.

B. TDDB under Constant-Voltage Stress

C. Endurance

D. Retention

E. Model Fits

Time-to-failure follows a Weibull law:
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Fig. 4. TDDB cumulative failure probability (CDF) under multiple stress
conditions.

Fig. 5. TDDB Weibull plots with fitted slope V ≈ 1.3 and scale [.

Fig. 6. Endurance characteristics (Δ+th vs. cycles). Up to 105 cycles; memory
window shrinks 20–30%.

with slope V ≈ 1.3 and scale [ extracted from Fig. 5. Temper-
ature acceleration is described by an Arrhenius relation:
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Fig. 7. Retention summary (CDF and/or Arrhenius extrapolation).

Activation energies: �a ≈ 0.78 eV (2.3 V), 0.84 eV (2.5 V),
0.88 eV (2.7 V). Endurance fit:

Δ+th (#) ≈ 1.12 − 0.05 log10 #. (3)

Summary of Reliability Results

Fabricated FeFET devices show endurance exceeding 105

cycles (Fig. 6) and retention > 10 years at 85◦C (Fig. 7). These
results validate the proposed +1 mask integration scheme for
automotive and industrial NVM.

V. System Architecture (SRAM + FeFET)

The SoC uses a single 1.8 V core domain for logic, SRAM,
and FeFET access. Write/erase pulses are generated by an on-
chip charge pump. A lightweight controller backs up SRAM
contents to the FeFET array on power-fail detection and
restores them at power-up. An optional 3.3 V domain is kept
for I/O and AMS.

Unlike stand-alone high-density NVM, the FeFET array
plays a supplementary role as backup/assistive memory for
SRAM.

Logic (1.8V)

SRAM

FeFET NVM Charge Pump ±2.5V

I/O & AMS (3.3V)

Fig. 8. System architecture with SRAM backup to FeFET.

SRAM Backup Ctrl FeFET NVM
Backup Restore

Fig. 9. Backup/restore flow between SRAM and FeFET.

VI. Discussion
The HfZrO2/Al2O3/TiN stack shows sufficient reliability for

embedded NVM. For high-temperature automotive, improve-
ments are required:

• Interlayer optimization: Al2O3 thickness tuning.
• Crystallinity control: RTA window and TiN work-

function.
• Defect mitigation: Precursor purity, ALD purge, post-

anneal.
• Circuit assists: ECC, adaptive pulses, refresh.
• Array architecture: Redundancy/repair, SRAM+FeFET

hybrid.
The FeFET’s role as SRAM backup (not stand-alone NVM)

avoids density stress, improves yield, and enhances reliability
for industrial/automotive.

VII. Conclusion
We demonstrated a +1 mask FeFET module on 0.18 `m

CMOS, requiring only one ALD tool. Devices achieved en-
durance > 105 cycles and retention > 10 years at 85◦C,
verified by TZDB, TDDB, endurance and retention analyses.
Positioning the FeFET array as a supplementary backup to
SRAM—rather than a stand-alone high-density NVM—re-
duces scaling pressure, improves yield, and enhances reliabil-
ity for automotive, industrial, and IoT applications. Overall, the
method provides a cost-effective path to extend mature-node
lifetimes while delivering dependable embedded nonvolatile
memory.
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