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Abstract—Gate-all-around (GAA) nanosheet FETs can be
designed under static assumptions, where parasitics and thermal
effects are treated as fixed values. However, complementary FETs
(CFETs) with stacked n/p channels suffer from strong vertical
self-heating and stress coupling. These effects vary dynamically,
leading to RC delay shifts that static design cannot capture.
This paper introduces a time-response-aware design paradigm:
proportional-integral-derivative (PID) feedback regulates delay
deviation, finite-state machine (FSM) guards ensure safety under
hotspots, and large language model (LLM) supervision adapts
controller gains under workload drift. Simulations of compact
RC-thermal-stress networks in SystemDK demonstrate more
than two orders of magnitude suppression of delay deviation,
reducing peak error from ~8% to 2.6 x 10~ and steady-state
error below 10 °. This reframes CFET optimization from static
prediction to dynamic compensation, addressing self-heating and
stress-induced variability in sub-2 nm integration.

I. INTRODUCTION

Until the GAA generation, device and circuit design could
rely on static analysis: resistance, capacitance, and temperature
rise were treated as fixed values. However, as we move
to CFET integration, where nFET and pFET are vertically
stacked, two challenges dominate: (1) self-heating, where the
top tier’s heat propagates to the bottom tier, raising resistance
and delay; and (2) stress coupling, where vertical stacking
and thermal expansion generate asymmetric strain, modulating
threshold voltage and carrier mobility. Both effects are strongly
time-dependent and interact with RC delay.

Conventional static design optimizes for a snapshot condi-
tion, but fails to account for how delay, temperature, and stress
evolve over time. This limitation motivates a new paradigm:
time-response-aware design, where stability and convergence
under dynamic workloads become first-class design targets.
We incorporate control theory—PID feedback, FSM guards,
and LLM supervision—to stabilize delay and temperature in
CFET stacks. Unlike prior studies that only modeled para-
sitics [1]], [2]], we demonstrate runtime compensation. Classical
control theory references such as Franklin [3|], Khalil [4], and
Anderson [5]] form the analytical backbone of this work.

II. PROBLEM STATEMENT: SELF-HEATING AND STRESS
CHALLENGES

CFET integration introduces coupled physical phenomena
that cannot be captured by static assumptions: 1) Self-heating:

Power dissipated in the top tier propagates downward, increas-
ing the temperature of the lower tier. The rise in temperature
increases via resistance, causing time-varying RC delay. 2)
Stress coupling: Vertical stacking and thermal expansion in-
duce asymmetric mechanical stress. This stress alters threshold
voltage and carrier mobility, leading to delay variability. 3)
Static design limitations: Traditional methods provide only
a snapshot at fixed conditions. In CFETs, delay dynamically
shifts due to coupled thermal and stress effects, which static
optimization cannot predict or compensate. Therefore, CFET
requires a time-response-aware design methodology.

III. MODELING

We integrate RC delay, thermal dynamics, and stress cou-
pling into a unified model.

A. Baseline Delay

Tdelay = (Rwire + Rm'a)(cload + Cintcr)-

B. Thermal Dynamics

dT
R(T) = Ry (1 + OZ(T — Tref)) s Cth% = P'Rth—(T—Tamb).

C. Stress Coupling

pefs = po(l —v0crs),

where o.¢5 is proportional to AT. Delay couples to both T°
and o.

IV. CONTROL ARCHITECTURE

We propose a three-layer architecture: 1) PID controller:
Regulates delay deviation ¢4 via DVFS actuation u. 2) FSM
guard: Enforces HOT mode when Ti,, > 85°C, bounding
U < Umgqge. 3) LLM supervisor: Retunes (K, K;, Kg) and
FSM thresholds when overshoot/error exceed tolerance. These
layers provide stability (PID), safety (FSM), and adaptability
(LLM).
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Fig. 1. CFET control block diagram (2-column). Arrows are routed in non-overlapping lanes; u runs horizontally beneath the LLM and then rises vertically
into the plant; retune enters the PID at its left edge; labels use white backgrounds.

V. EXPERIMENTAL SETUP

Simulations were performed using SystemDK 2025 with
dt = 1 ns and horizon 1.5 s. Parameters: R,;, = 1-10 €,
Cinter = 1-5 fF, Pyyrst = 0.1-1.0 W, k. = 0.3-0.9, v =
0.05-0.2. Thermal RC constants were from compact models.
PID initial gains via Ziegler—Nichols, FSM threshold 85°C,
LLM adaptation enabled.

VI. RESULTS

A. Without Control

Burst heating increased delay deviation ~8%. Stress cou-
pling further degraded mobility.

B. PID Only

Error reduced > 10x, but overshoot remained.

C. PID + FSM

Clamped actuation under hotspots, safe but inflexible.

D. PID + FSM + LLM (Proposed)

Smooth convergence across all conditions. Peak error 2.6 x
1073, steady-state error < 1076, robust across v = 0.05—
0.2. As shown in Fig. ] robustness of PID+FSM control is
preserved across a wide range of coupling factors k. and burst
powers Py, ensuring stable delay suppression under diverse
operating conditions.

TABLE I
PERFORMANCE COMPARISON
Metric No Ctrl PID PID+FSM | PID+FSM+LLM
Peak deviation | ~8% 1072 1073 2.6 x 1073
Steady error 10—2 10—4 ~0 < 10-6
Overshoot Large Medium Small Minimal
Stress tol. None Limited Medium Wide
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Fig. 2. Delay deviation trajectories: no control, PID, PID+FSM, and
PID+FSM+LLM.

Bode magnitude: plant vs closed-loop with PID
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Fig. 3. Bode magnitude: plant vs closed-loop with PID.

VII. STABILITY ANALYSIS
Closed-loop transfer:
L(s)
(s) = TL(S)’ (s)
PID ensured phase margin > 45°, gain margin > 6 dB. FSM
bounded u, LLM preserved stability as {k.,~y, P} drifted.

= C(s)G(s).

VIII. DISCUSSION AND LIMITATIONS
A. Significance
Shifts CFET design from static to dynamic compensation.
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Fig. 4. Heatmap of peak delay deviation under PID+FSM control across
coupling factor k. and burst power P, . Robustness is preserved across a
wide parameter space.

B. Comparison with Static Design

Static methods ignore time evolution; our method uses
convergence as design target.

C. Limitations

Compact-model abstraction, unmodeled noise/variation,
LLM hardware overhead.

D. Future Work

Chip-in-loop validation, forksheet/3D CFET extension, in-
tegration with cooling and NoC control.

IX. CONCLUSION

We proposed a time-response-aware CFET design with
PID+FSM+LLM supervision. Delay and thermal effects were
stabilized under dynamic workloads, reframing DTCO from
static prediction to dynamic compensation. Time-response-
aware design is essential for sub-2 nm integration.
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