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Abstract—We propose AITL on Space, an Adaptive Intelligent
Triple-Layer control architecture that integrates a robust core
(�∞ as the primary loop with PID as auxiliary), an FSM-based
supervisory layer, and an AI adaptor for on-orbit redesign.
A role-partitioned Tri-NVM hierarchy (SRAM/MRAM/FRAM)
is mapped onto a 22 nm FDSOI SoC to achieve low leak-
age, radiation tolerance, and temperature margin. The end-
to-end flow—specified in JSON via EduController, synthesized
by AITL-H to a fixed-point �∞ controller, validated by FPGA
HIL with SEU/SEL injection, and closed by SystemDK co-
simulation (thermal/radiation/packaging)—enables reproducible
and resilient autonomy for deep-space missions. Simulations and
HIL show a 20% improvement in robustness (`-analysis), 1.5×
faster attitude settling, and reduced active power (0.78 W) versus
a 28 nm CMOS baseline.

I. Introduction
Deep-space missions demand autonomy under single-event

effects (SEE), cumulative dose, and thermal cycling, while
operating within severe power and resource budgets. Single-
layer control architectures struggle to combine robustness, fail-
operational behavior, and adaptive longevity in these envi-
ronments. We therefore present AITL on Space, a three-
layer control stack: (1) an �∞ robust core as the primary
loop (with PID kept as an auxiliary stabilizer), (2) an FSM
supervisor for Safe/Nominal/Recovery modes with TMR, and
(3) an AI adaptor (LLM-based) for long-term re-identification
and rule/gain re-synthesis. On the silicon side, a Tri-NVM
memory hierarchy partitions responsibilities across SRAM
(execution with ECC/TMR), MRAM (code/log retention), and
FRAM (safe boot/FSM states). We target 22 nm FDSOI to
leverage low leakage, body-bias tunability, and improved SEE
tolerance. A SystemDK-centric design and verification loop
unifies models, HIL tests, and ASIC integration.

II. Related Work
A. Radiation-Hardened SoCs and Protection

Classic Rad-Hard approaches employ TMR and ECC, with
SOI processes reducing parasitics and soft-error susceptibility.
Recent 22 nm FDSOI nodes provide a strong trade-off among
leakage, body-bias adjustability, and radiation margins.

B. Robust Control (�∞) for Space Systems

PID remains attractive for simplicity, but multi-domain,
uncertainty-rich plants benefit from �∞ mixed-sensitivity de-
sign guaranteeing performance under bounded uncertainty. In
AITL, �∞ is the primary loop; PID is auxiliary; FSM super-
vises mission modes; and the AI adaptor updates rules/gains
under guard rails.

C. Non-Volatile Memories in Space (SRAM/MRAM/FRAM)

SRAM excels in speed yet is SEU-prone (mitigated by
ECC/TMR). MRAM provides robust retention and endurance.
FRAM enables low-energy, frequent writes. We allocate exe-
cution to SRAM, program/log to MRAM, and safe boot/FSM
to FRAM.

D. SystemDK-Based Verification and Chiplet Readiness

SystemDK enables system-level co-simulation spanning
control logic, RTL, and physical effects. This is especially
important for chiplet integration (analog/control, NVM, power
management, and interconnect), where early system verifica-
tion reduces re-spins.

III. Specification and Design Flow

Mission-level requirements (pointing accuracy, power sta-
bility, thermal margin) are captured in EduController
and exported as JSON: (�, �, �, �), weighting functions
(,1,,2,,3), and fault scenarios. AITL-H synthesizes an �∞
controller  (output feedback, mixed-sensitivity), emits fixed-
point code for RTL/FPGA/ASIC, and generates testbenches.
Validation includes:
• FPGA HIL: SEU/SEL injection, sensor outages; metrics

include safe-mode entry < 1 s, recovery rate ≥ 99%, and
ECC scrubbing efficiency.

• SystemDK FEM: thermal cycles, radiation effects, and
packaging stress to close the loop before silicon.

• ASIC Mapping: 22FDX FDSOI implementation hard-
ened for long-duration missions.

https://github.com/Samizo-AITL


IV. System Architecture (AITL on 22 nm FDSOI)

A. Three-Layer Control Stack

Robust Core (�∞/MIMO) stabilizes attitude/propul-
sion/power jointly under disturbances and uncertainty; PID
supports initial/local stabilization. FSM Supervisor man-
ages mode transitions (Safe/Nominal/Recovery) under TMR.
AI Adaptor performs low-frequency re-identification and
gain/rule updates, gated by safety constraints and verification
hooks (‘‘apply-if-safe’’).

B. Tri-NVM Hierarchy and Protection

SRAM for execution (ECC/TMR-protected), MRAM for
program and persistent logs (high endurance, radiation toler-
ance), and FRAM for safe boot images and FSM states (low-
energy frequent writes). This division reduces SEU risk while
enabling fast recovery.

C. Chiplet Integration and Power Management

22 nm FDSOI supports body-bias control for dynamic op-
erating points. Chiplet partitioning (analog I/O, digital con-
trol, NVM, power management) isolates sensitive domains
and eases redundancy planning; a radiation-tolerant inter-
poser/NoC links chiplets.

V. Mathematical Model and �∞ Synthesis

To capture the multi-domain nature of spacecraft control, we
model the plant as a coupled linear time-invariant (LTI) system
including attitude, power, and memory-protection dynamics.
The continuous-time state equation is

¤G = �G+�1F+�2D, I = �1G+�11F+�12D, H = �2G+�21F,
(1)

where the state vector

G =
[
lG lH \G \H E1 B 4

]>
combines attitude rates/angles (l, \), bus voltage E1, battery
SOC B, and uncorrected memory error 4. The input vector

D =
[
gG gH 8dc Dscrub

]>
represents control torques, regulated load current, and memory
scrubbing level. Disturbances F include external torques,
solar-current variation, and thermal stress.

The block structure of � highlights inter-domain coupling:

� =


�att 0 0

�pwr←att �pwr 0
0 �mem←pwr �mem

 ,
where �pwr←att models the load of reaction-wheel torque on
the bus, and �mem←pwr captures the effect of voltage/thermal
variation on SEU accumulation.

A. Mixed-Sensitivity �∞ Design

We define the performance output

I =
[
,( (A − Hatt) ,+ (E1 − E★1) ,�4 ,)D

]>
,

where ,( ,,+ ,,� ,,) are frequency-dependent weights for
attitude tracking, bus-voltage regulation, memory-error sup-
pression, and actuator usage, respectively.

The synthesis problem is to find an output-feedback con-
troller  minimizing

‖)F→I ( )‖∞, (2)

subject to fixed-point realizability for FPGA/ASIC implemen-
tation. Observers and filters are co-designed to meet loop-
latency and resource constraints, ensuring robust stability and
performance across the coupled multi-domain plant.

Discretization for Implementation: For implementation
on FPGA/ASIC, the continuous-time model is discretized with
sampling time )B under zero-order hold:

G:+1 = �3G:+�13F:+�23D: , I: = �13G:+�113F:+�123D: , H: = �23G:+�213F: ,
(3)

where (�3 , �13 , �23 , �13 , �23 , �113 , �123 , �213) are ob-
tained from (�, �1, �2, �1, �2, �11, �12, �21) by zero-order
hold at )B .

Measured Outputs Used for Feedback: Let the attitude
measurement stack be

Hatt =
[
\G \H lG lH

]>
,

and the full measurement be H =
[
H>att E1 B 4

]>. Sensor
noise and outages are injected via F and �21( ·) .

Uncertainty Description: Plant/model uncertainty is cap-
tured with a standard multiplicative form on the discrete plant
%3:

%Δ (I) = %3 (I)
(
� +,Δ (I) Δ(I)

)
, ‖Δ‖∞ ≤ 1,

where ,Δ shapes frequency-dependent uncertainty (e.g., un-
modeled RW friction, power-rail dynamics, and temperature-
induced drift). The �∞ synthesis is performed on the lower
LFT interconnection of %Δ with the weighting channel.

Weighting Structure (Examples): Typical mixed-
sensitivity weights used in our study are first/second-order
forms:

,( (B) =
B
l�
+ "(

B
l�
+ Y(

, ,) (B) =
B
l)
+ Y)

B
l)
+ ")

,

,+ (B) =
U+

B/l+ + V+
, ,� (B) = W� ,

with l�, l) , l+ (bandwidths) and
"( , ") , Y( , Y) , U+ , V+ , W� tuned from mission specs
(tracking/overshoot limits, bus-voltage ripple, and residual
error targets). Saturation and duty limits on actuators are
handled via ,) .



Fig. 1. SEU event rate comparison (relative). MRAM/FRAM show 60% fewer
events than SRAM.

Objective and Realization: The discrete closed-loop ob-
jective retains the mixed-sensitivity �∞ form,

min
 



)F→I ( )

∞ s.t. fixed-point realization at word length (=int.=frac),
(4)

where scaling of observers/filters is co-designed to avoid
overflow while meeting loop-latency constraints at 5clk.

VI. Simulation and HIL Experiments

A. Space-Environment Scenarios

(1) Radiation Injection (SEU/SEL): TMR/ECC efficacy
validated; MRAM/FRAM exhibit ∼60% fewer events than
SRAM under identical injection profiles.
(2) Power Drop / Thermal Cycling: body-bias adapts fre-
quency/voltage; in −50◦C to +125◦C, FSM transition latency
remains within 5%.
(3) Multi-Domain �∞: against solar radiation pressure, ge-
omagnetic disturbance, and thruster noise, robustness index
(`-analysis) improves 20% over PID-only baseline.

VII. Simulation and HIL Experiments

A. Space-Environment Scenarios

(1) Radiation Injection (SEU/SEL): TMR/ECC efficacy
validated; MRAM/FRAM exhibit ∼60% fewer events than
SRAM under identical injection profiles.
(2) Power Drop / Thermal Cycling: body-bias adapts fre-
quency/voltage; in −50◦C to +125◦C, FSM transition latency
remains within 5%.
(3) Multi-Domain �∞: against solar radiation pressure, ge-
omagnetic disturbance, and thruster noise, robustness index
(`-analysis) improves 20% over PID-only baseline.

B. FPGA HIL Results

Zynq Ultrascale+ implementation with SEU emulation
shows TMR suppresses spurious FSM transitions by > 98%.
�∞ accelerates attitude settling by 1.5× vs. PID. Using a 22 nm
FDSOI device model, leakage is ∼35% lower than a 28 nm
CMOS reference at matched conditions.

Fig. 2. FSM transition latency under thermal cycling. Delay remains within
5%.

Fig. 3. Robustness index (`-analysis). Multi-domain �∞ achieves +20%.

C. Power/Performance Summary
D. Implementation Observations

Tri-NVM balances speed/retention/radiation tolerance;
22 nm FDSOI improves power and SEE margins; multi-
domain �∞ stabilizes coupled plants; SystemDK unifies
chiplet design and space-environment scenarios.

VIII. Discussion
A. Effectiveness of the Three-Layer Stack

The proposed three-layer control stack demonstrates clear
performance gains. With �∞ as the primary loop and PID
as an auxiliary stabilizer, the system achieves a measured
20% improvement in robustness index and a 1.5× reduction
in attitude settling time compared to a PID-only baseline.
The FSM layer, reinforced with TMR, effectively eliminates
spurious mode-transition faults, while the AI adaptor enables
safe updates of rules and gains to compensate for long-
term drift and unmodeled disturbances. As summarized in
Fig. 5, implementation outcomes further confirm these ben-
efits, showing >98% suppression of FSM mis-transitions and
a 35% reduction in leakage power relative to a 28 nm CMOS
reference.

B. Semiconductor Platform Significance
FDSOI’ s body-bias and isolation reduce leakage and SEU

susceptibility; Tri-NVM’ s functional partitioning (SRAM:
execution, MRAM: retention/logs, FRAM: safe boot/FSM)
enhances effective resilience in-flight.



TABLE I
Power, reliability, and performance comparison

Metric Unit AITL SoC (22 nm FDSOI) Legacy SoC (28 nm CMOS)

Active Power W 0.78 1.20
Standby Power mW 12 25
Mean SEU Rate bit-hr−1 1/107 1/106

Attitude Settling (disturbed) s 0.65 1.0
Fail-safe Recovery Success % 99.2 93.5

Conditions: ) = 25◦C, +core = 0.8 V,

50 MHz loop, identical disturbance profiles (solar pressure, geomagnetic disturbance, thruster noise).

Fig. 4. Attitude settling time comparison. �∞ reduces settling to 0.65 s versus
PID (1.0 s).

Fig. 5. Implementation outcomes (relative): FSM mis-transitions suppressed
by 98%, leakage reduced by 35%.

C. SystemDK Payoff
System-level reproduction of space scenarios before silicon

reduces design–lab iterations; our data indicates ∼30% sched-
ule reduction to HIL sign-off.

D. System Impact and Limits
High fail-safe rate (>99%), low active power, and adaptive

autonomy broaden mission envelopes. Remaining issues: on-
board AI compute budgeting, �∞ scaling vs. logic/memory
cost, and standardization of rad-hard chiplet interconnects.

Novelty and Contributions

• Three-Layer Control Novelty: �∞ primary + FSM su-
pervisory + AI adaptor (PID auxiliary) unifies robustness,
safety, and on-orbit redesign.

• Tri-NVM Guidance: clear role partitioning
(SRAM/MRAM/FRAM) with ECC/TMR for space-
grade memory hierarchies.

• SystemDK-Centered Flow: single framework to verify
space scenarios and chiplet integration pre-silicon.

• Validated Gains: +20% robustness, 1.5× settling
speedup, 0.78 W active.

Conclusion
AITL on Space fuses robust control, supervisory safety,

AI re-identification, and hardened memory on 22 nm FDSOI,
verified by a SystemDK-driven flow from mission specification
to ASIC. The approach improves reliability, performance, and
power concurrently, positioning AITL as a candidate standard
architecture for chiplet-based space-grade SoCs. Future work:
scaling high-order �∞, distilled on-board AI, and standard rad-
hard interconnects.
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Fig. 6. End-to-end design flow from mission specification to ASIC.
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Fig. 7. AITL architecture (simplified): three-layer control stack with role-partitioned tri-NVM hierarchy.
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Fig. 8. Closed-loop structure for robust design. Objective: minimize ‖)F→I ‖∞ under mixed-sensitivity shaping.
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